Kernel regression estimation of fiber orientation mixtures in diffusion MRI

نویسندگان

  • Ryan P. Cabeen
  • Mark E. Bastin
  • David H. Laidlaw
چکیده

We present and evaluate a method for kernel regression estimation of fiber orientations and associated volume fractions for diffusion MR tractography and population-based atlas construction in clinical imaging studies of brain white matter. This is a model-based image processing technique in which representative fiber models are estimated from collections of component fiber models in model-valued image data. This extends prior work in nonparametric image processing and multi-compartment processing to provide computational tools for image interpolation, smoothing, and fusion with fiber orientation mixtures. In contrast to related work on multi-compartment processing, this approach is based on directional measures of divergence and includes data-adaptive extensions for model selection and bilateral filtering. This is useful for reconstructing complex anatomical features in clinical datasets analyzed with the ball-and-sticks model, and our framework's data-adaptive extensions are potentially useful for general multi-compartment image processing. We experimentally evaluate our approach with both synthetic data from computational phantoms and in vivo clinical data from human subjects. With synthetic data experiments, we evaluate performance based on errors in fiber orientation, volume fraction, compartment count, and tractography-based connectivity. With in vivo data experiments, we first show improved scan-rescan reproducibility and reliability of quantitative fiber bundle metrics, including mean length, volume, streamline count, and mean volume fraction. We then demonstrate the creation of a multi-fiber tractography atlas from a population of 80 human subjects. In comparison to single tensor atlasing, our multi-fiber atlas shows more complete features of known fiber bundles and includes reconstructions of the lateral projections of the corpus callosum and complex fronto-parietal connections of the superior longitudinal fasciculus I, II, and III.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Determination of Fiber Direction in High Angular Resolution Diffusion Images using Spherical Harmonics Functions and Wiener Filter

Diffusion tensor imaging (DTI) MRI is a noninvasive imaging method of the cerebral tissues whose fibers directions are not evaluated correctly in the regions of the crossing fibers. For the same reason the high angular resolution diffusion images (HARDI) are used for estimation of the fiber direction in each voxel. One of the main methods to specify the direction of fibers is usage of the spher...

متن کامل

Extracting Tractosemas from a Displacement Probability Field for Tractography in DW-MRI

In this paper we present a novel method for estimating a field of asymmetric spherical functions, dubbed tractosemas, given the intra-voxel displacement probability information. The peaks of tractosemas correspond to directions of distinct fibers, which can have either symmetric or asymmetric local fiber structure. This is in contrast to the existing methods that estimate fiber orientation dist...

متن کامل

Registration of Spherical Functions from High Angular Resolution Diffusion Imaging using the Heat Kernel Signature and Möbius Transformation

High angular resolution diffusion imaging (HARDI) is a powerful variant of diffusion MRI, which images the 3D profile of diffusion at each imaged location in the brain. At each voxel, this leads to an orientation density function (ODF) expressing the probability density of water diffusion in each direction on the unit sphere. As diffusion is greatest along the brain’s axons, these functions are...

متن کامل

Segmentation of High Angular Resolution Diffusion MRI Modeled as a Field of von Mises-Fisher Mixtures

High angular resolution diffusion imaging (HARDI) permits the computation of water molecule displacement probabilities over a sphere of possible displacement directions. This probability is often referred to as the orientation distribution function (ODF). In this paper we present a novel model for the diffusion ODF namely, a mixture of von Mises-Fisher (vMF) distributions. Our model is compact ...

متن کامل

A new methodology for the estimation of fiber populations in the white matter of the brain with the Funk-Radon transform

The Funk-Radon Transform (FRT) is a powerful tool for the estimation of fiber populations with High Angular Resolution Diffusion Imaging (HARDI). It is used in Q-Ball imaging (QBI), and other HARDI techniques such as the recent Orientation Probability Density Transform (OPDT), to estimate fiber populations with very few restrictions on the diffusion model. The FRT consists in the integration of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • NeuroImage

دوره 127  شماره 

صفحات  -

تاریخ انتشار 2016